The Convolution Theorem

The Convolution Theorem states:

$$f(x) * g(x) \iff F(u)G(u) \text{ and } f(x)g(x) \iff F(u) * G(u)$$

Proof:

Part I: Proof of the Shift Theorem or shift-invariance:

First we prove the *shift property*, that is, that the Fourier Transform (\mathcal{F}), as a "system," is shift-invariant:

That is, if
$$f(x)$$
 then $f(x-a)$ $f(x)$ $f(x)$ $f(x)$

That means that adding a shift (x-a) doesn't change the spectrum, F(u), it just adds a *linear phase*, which amounts to multiplication by $e^{-i2\pi ua}$. Multiplying F(u) by $e^{-i2\pi ua}$ for different a translates or shifts f(x) by a.

Let x' = x - a and dx = dx'

Then
$$F[f(x-a)] = F[f(x')] = \int_{-\infty}^{\infty} f(x') e^{-i2\pi[u(x'+a)]} dx'$$

Now $e^{-i2\pi u(x'+a)} = e^{-i2\pi ua} e^{-i2\pi ux'}$ where $e^{-i2\pi ua}$ is a constant:

So
$$F[f(x-a)] = e^{-i2\pi ua} F(u)$$
 which is the "**Shift Theorem**"

Therefore, the Fourier Transform, as a *System*, is "shift-invariant."

Significance: Shifting or translating a spatial function a distance x = a adds a linear phase $\theta = ua$ to the original phase. Conversely, a linear phase filter produces a translation of the image. The magnitude spectrum remains unchanged.

Part II: Proof of the Convolution Theorem:

By definition,
$$f(x) * g(x) = \int_{-\infty}^{\infty} f(x) \ g(y-x) dx$$

The Fourier Transform of f(x) * g(x) is

$$\int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} f(x) \ g(y-x) \ dx \right] e^{-i2\pi u y} \ dy$$

That is, after the convolution integral is evaluated, the [] brackets will contain a function of y, so the variable of integration for the Fourier Transform is y.

Thinking of these nested integrals as a double summation loop in x and y, with y being the outside loop:

$$\sum_{y=-\infty}^{\infty}\sum_{x=-\infty}^{\infty}\dots \quad \text{we can easily reverse the order of integration } \sum_{x=-\infty}^{\infty}\sum_{y=-\infty}^{\infty}\dots \quad \text{to}$$

$$\int_{-\infty}^{\infty} f(x) \left[\int_{-\infty}^{\infty} g(y-x) e^{-i2\pi u y} dy \right] dx$$

- reversing the order of integration allows the [] brackets to be moved to include the terms over which we are integrating
- f(x) can be treated as a constant when integrating over y, and can therefore be pulled outside of the inner integral.

But, by the Shift Property (Part I),

$$\int_{-\infty}^{\infty} g(y-x) e^{-i2\pi uy} dy = F[g(y-x)] = e^{-i2\pi ux} G(u)$$

So
$$\int_{-\infty}^{\infty} f(x) \left[\int_{-\infty}^{\infty} g(y-x) e^{-i2\pi u y} dy \right] dx = \int_{-\infty}^{\infty} f(x) e^{-i2\pi u x} G(u) dx$$
$$= \left[\int_{-\infty}^{\infty} f(x) e^{-i2\pi u x} dx \right] G(u)$$
$$= F(u) G(u)$$

Since the Fourier Transform F[f * g] = F(u) G(u), Convolution in the space/time domain is equivalent to multiplication in the frequency domain.